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The response of an electromagnetic flowmeter to the flow rate through it should ideally 
be independent of the velocity distribution of the liquid within it. I n  general such 
flowmeters do not exhibit this ideal behaviour and the variation in response with 
different velocity distributions, for a given flow rate, can be very large. The sensitivity 
of a flowmeter to velocity distribution is here described in terms of a ‘worst flow’, 
which is a particular velocity distribution peculiar to a given flowmeter. The ‘worst 
flow ’ is described mathematically in terms of functions which depend upon the design 
parameters of the flowmeter. The flowmeter response to its ‘worst flow’, for a given 
kinetic energy of motion, is formulated. This enables a criterion ( 8 )  to be defined which 
describes the sensitivity of a given flowmeter to velocity profile effects and which 
permits different flowmeters to be compared in this respect. Methods of evaluating E 

are discussed and its value is calculated for a conventional flowmeter, which employs 
small electrodes and an approximately uniform magnetic field. It is shown that it is 
possible actually to generate this worst flow in a given flowmeter, by operating the 
flowmeter in the role of an electromagnetic pump. This could lead to the direct 
measurement of 6. The possibility is discussed of other definitions of 6, based on 
different boundary conditions and constraints and which might lead to a less severe 
criterion . 

1. Introduction 

Principle of the electromagnetic flowmeter. In  its conventional form the electro- 
magnetic flowmeter consists of a short cylindrical flow channel of circular cross- 
section, in the wall of which are fitted two small diametrically opposed electrodes, 
their surfaces in contact with the flowing liquid. A suitable external magnetic field 
is imposed upon the channel in the general region occupied by the electrodes, 
between which an electric potential is produced by the movement of the conducting 
liquid through the magnetic field. This electric potential is amplified and recorded as 
a measure of flow rate through the channel. 

The conventional electromagnetic flowmeter has a high degree of sensitivity, for a 
given flow rate, to the distribution of velocity within the liquid (see, for example, 
Shercliff 1962; Wyatt 1972, 1977; Al-Khazraji et al. 1978). Hitherto there has been no 
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description of a rigorous analytical basis for comparing the sensitivities of different 
flowmeters to three-dimensional velocity distribution effects, although the suggestion 
has been mentioned previously (Wyatt 1972, 1977). It is the purpose of this paper to 
describe such a basis and to indicate how it can be evaluated. We note that an approxi- 
mate and different numerical basis has been used elsewhere (Al-Khazraji 1979). 

The basic flowmeter equation (Shercliff 1962) is 

V 2 U  = V . ( V X B )  (1) 

where U is the electric potential in the liquid, v is the velocity and B the magnetic 
flux density. The most general solution to this equation is that given by Bevir (1970): 

where 

n 

W = B x j .  

Here j is a particular current distribution which describes completely the boundary 
conditions of the flow channel and electrodes of a given flowmeter. Precisely, it  is the 
current density that would be set up in the liquid by passing unit current into one 
electrode and extracting i t  from the other. Bevir gave the name virtual current to j, 
to distinguish it from currents which exist in a working flowmeter. W is known as the 
weight vector. 

The volume r over which the integral is taken is theoretically the whole liquid 
volume but in practice can be taken to be the volume of liquid in the flowmeter 
together with the liquid in those parts of the connecting pipes on either side of it from 
beyond which contributions to the integral are negligible. Provided the magnetic 
induction falls with distance from the flowmeter, the distance either side of the 
flowmeter which contributes to T is governed by the virtual current and is at  most 
3 pipe diameters for 0.1 yo accuracy (Bevir 1970; Hemp 1975, figure 10). 

In addition to equation (2), Bevir also gave the following condition for a flowmeter 
to be ideal, that is, for its response to flow rate to be entirely independent of the 
velocity distribution : 

v x w = o .  (4) 

Note that in this particular case, when the vector field represented by W is irrotational, 
we can write 

in which 4 is a scalar quantity. 

here is dependent upon them. 

w = vq5, (5) 

Bevir’s results (2)) (3) and (4) form the basis of flowmeter theory and what follows 

2. The ‘worst flow’ concept 
2.1. Dejnition of ‘worst $ow ’ 

It is known that, in general, the response of an electromagnetic flowmeter to a given 
flow rate through it varies with the velocity distribution (or, as is often said, with the 
velocity profile; although it is to be noted that this term implies that the flow is 
rectilinear, which generally is not so). We refer to this response variation as ‘error’ 
and it is natural t’o enquire whether there is not a particular velocity distribution 
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which causes greater ‘error’ than any other. (We would clearly need a baseline against 
which to  measure such ‘error’: a natural one to choose would be the response with a 
uniform velocity.) Now any velocity distribution can be resolved into a uniform 
velocity due to the flow rate and a purely circulating velocity distribution having zero 
flow rate through the meter. Thus our enquiry reduces to the question of whether there 
is a particular circulating velocity distribution having zero flow rate through the 
meter which would elicit a larger response than any other such velocity distribution 
(subject of course to some appropriate constraint on its overall magnitude). This we 
tentatively term the ‘worst flow’. 

2.2. Mathematical development of the ‘ worst $ow’ 
If such a ‘worst flow’ exists it should be possible to define it by finding that purely 
circulating velocity distribution which maximizes the magnitude of 

u =  W.vdr  

subject to any given constraints on the velocity and under the appropriate boundary 
conditions. We consider a flowmeter in the middle of a straight pipe which extends to 
infinity in both directions. We restrict the kinetic energy of the motion by applying 
the relationship 

jT  

j T v 2 d +  = K ,  (6) 

where K is a constant, this being the easiest way to constrain the velocities in an 
unknown velocity distribution (this and other possible ways of constraining the 
velocity are discussed in $7) .  The volume r is bounded by part of the pipe wall of 
area S,  and by two arbitrary imaginary surfaces S, and S,  which span the pipe up- 
stream and downstream from the flowmeter respectively. In  order to make the best 
use of the available kinetic energy the worst flow will clearly concentrate itself in the 
central region of the flowmeter where the sensitivity is high; but we cannot from this 
observation rule out the possibility of finite v a t  S, and 8,. However, if we choose to 
place Xu and S, infinitely far from the flowmeter we can say with certainty that 
v = 0 a t  these surfaces. The reasons are; first, any movement a t  the surfaces 
which is associated with movement near the flowmeter necessarily implies movement 
throughout the pipe and therefore would be prevented by the imposition of equation 
(6). Secondly, any circulating movement restricted to the locality of the surfaces 
(which therefore would not be prevented by equation (6)) would not occur because all 
practical flowmeters have W = O in regions infinitely far from the flowmeter. Conse- 
quently such movements would generate no signal and would not be invoked by the 
maximization process. I n  what follows, the surfaces 8, and S,  will be taken to be 
infinitely far from the flowmeter and the magnitude of v on these surfaces will be 
taken as zero. All volume integrals will be taken over the whole, infinite volume of the 
pipe and for convenience the bound T will be dropped. We note that equation (6), 
together with the choice of S,, S ,  at infinity, also precludes the possibility of a finite 
flowrate and ensures that the resulting velocity distribution is a purely circulating one. 

Our problem therefore is to maximize U with the boundary conditions 

v .ds  = 0 on the wall S,, (7) 

v = 0 on the surfaces S,,, S,, (8) 
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and under the constraints 
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vadT = K ,  

v . v  = 0. 

We have to find the extremum of the function 

s 

where h and y are Lagrangian multipliers: h is a function of position and y is a con- 
stant. We use the identity 

j-h(V.V)dT = hv.ds-  v.(Vh)dr s s  
so that L mav be written 

We set the variation of L equal to zero, whence 

and thus 

o =  (‘(W-Vh+2yv).Bvdr 
J 

1 
v = --(W-Vh). 

2Y 

We use equation (14) with equations (7), (9) and (10) to obtain the following equations 
which define h and y (Bevir’s (1970) theory assumes that V x B and V x j are both 
zero; henceV.W = j . V x B - B . V x j  = 0): 

I V2h = 0, 
I 
I - W, on the wall, 

ah 
an 
_ -  

where 81% denotes the derivative in a direction along the normal to the wall and W, 
is the component of W in the same direction. 

The extremum of U is obtained by substituting equations (14) and (16) into the 
equation for U.  However, we first note that since 

f(Vh).VdT = JV.(hv)dr- h(V.v)dr = hv.ds = 0, s s 
U may be written 

u = W.VdT = (W-Vh).VdT. s s  
Equations (la), (16) and (17) give the extremum Urn of U :  
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We show in appendix C that Urn represents the maximum value of U .  That is, the 
velocity distribution given by equation (i4), where h is defined by equations (15)) is 
the ‘worst flow’. 

Note that, except for a constant, equation (14) is entirely dependent upon the 
design characteristics of the flowmeter, as expressed by W. Thus each flowmeter has 
a particular ‘worst flow’ distribution. Also, the response Urn to the ‘worst flow) is, 
for a given kinetic energy, purely a function of the flowmeter design. 

2.3. Interpretation of /(W - Vh)2dr 

The integral s(W - Vh)2dr has the form of the sum of the squares of the deviations 
of W from the quantity Vh; and, since Vh is the gradient of a scalar quantity, theintegral 
is a measure of the deviation of W from a certain irrotational vector field. Now it can 
be shown that, if we consider W as given and h as variable, the value of h which 
minimizes the integral is precisely that defined by equations (15). That is, the integral 
is a measure of the deviation of W from the nearest irrotational vector field. 

3. The basis for comparison of different flowmeters 

magnetic flowmeter to velocity distribution: 

where the integrals are taken over the whole volume of liquid. W, is the component 
of W parallel to the flowmeter axis and determines the flowmeter response to a 
uniform velocity distribution. The square root and u3 (a  is the radius of the flowmeter) 
ensure that E is non-dimensional; the factor a3 ensures that E has the same value for 
flowmeters of the same design but which are of different sizes. E has the form of the 
square root of the square of the deviation of the weight vector from the nearest 
irrotational vector field summed over the whole volume of liquid, as a fraction of W, 
summed over the whole of the volume of the liquid. 

Apart from the observations that we have made in ss2.1 and 2.3 and the way that 
E follows naturally from them, we can see directly that E is a measure of the degree to 
which the sensitivity of the flowmeter varies with velocity distribution. Suppose 
there to be a velocity distribution consisting of a circulating flow of zero flow rate, which 
by itself would produce a flowmeter voltage SU,  together with a uniform velocity V 
which by itself would produce a voltage U .  Then 

We define the following quantity E as a measure of the sensitivity of any electro- 

E = (~‘j(W-Vh)’d.>a/jw,dr, (19) 

where Urn is the ‘worst flow’ with the same kinetic energy as the given circulating 
flow. Now I K d r  is simply the sensitivity S of the flowmeter, defined here as the 
voltage obtained with a uniform ffow of unit speed. Hence 

urn 
€ =  

S(  K/a3)*’ 
whence 

and 
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Now (K/a3)j  is an average of the speed of the circulating flow and equation (20) there- 
fore shows that E is a measure of the degree to which the flowmeter voltage is affected 
by the circulating flow, i.e. by the velocity distribution for a given flow rate through 
the meter. 

4. The magnitude of e 

It is well known that when the magnetic field is uniform the weight function W 
tends to infinity as a point electrode is approached. The integral 11 Wl d7 however 
remains finite, which means of course that the sensitivity (JK d7) is also finite. This is 
merely a consequence of the way W varies as the electrode is approached and there 
is nothing curious about it either mathematically or physically. However, the integral 

I =  (W-Vh)2d7 s 
does not remain finite. The reason is that I contains / W 2 d r  and W a R-2, which 
ensures that I diverges (see appendix A, equation (A 3); it happens to be the case 
that V h  also is a R-2 (appendix A, equation (A 8)) but the ‘constant’ of propor- 
tionality is different so that I definitely diverges). I n  this respect I behaves very 
much as the variance of the rectilinear weight function (Wyatt 1972). 

I n  general then E will assume values ranging from 0 for an ideal flowmeter to co for 
a uniform-field, point-electrode flowmeter (see also appendix B). Clearly, a ‘good’ 
flowmeter will be one for which E < 1 (see equation (20)). Most medical and industrial 
flowmeters in use today have magnetic fields which are approximately uniform and 
electrodes which although not points are nevertheless small. As an example of the 
value of E to be expected with such flowmeters, we have calculated that, when the 
electrode radius is & of the channel radius, e is approximately 0.63 (see appendix A). 
This value, for a flowmeter which is known to be highly sensitive to velocity 
distribution, is the maximum value of E likely to be met with in practice. It serves as 
an upper figure with which values of E for other (improved) flowmeters may be 
compared. 

5. Generation of the ‘worst flow’ 
It is possible to generate the ‘worst flow’ in the flowmeter itself. We were led to the 

means of achieving this through several consecutive observations. First B x j, in 
addition to being the weight vector, is also the body force on the liquid when a real 
current is made to flow into one electrode and out of the other. Second, it occurred to 
us that equation (4) implies that the body force can be exactly balanced by a pressure 
distribution p so that W - Vp = 0. This led to the following idea for testing whether 
or not a given meter is ideal. The meter is operated in the ‘pump mode’, that is, it is 
placed in a pipe the ends of which are closed far from the flowmeter and a current is 
passed between the electrodes with the magnetic field present. Motion of the liquid 
(indicated for example by suspended particles) would indicate that the flowmeter 
was not ideal; no motion would mean it was ideal. 

One of us (D G W) then conceived the idea of a ‘worst flow ’ and recognized that the 
liquid motion generated in the pump mode when the meter is not ideal must in some 
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sense actually be the ‘worst flow’. This is because the body force in the pump mode 
causes the greatest circulation in precisely those loops around which flow causes the 
greatest flowmeter signal. 

When the flowmeter is in the pump mode, the equation governing the motion is: 

av 
at 

p-++(v.V)v = -Vp+?pv-iW 

subject to the conditions 

1 v .  ds = 0, 

v . v  = 0, 

a t  the walls, 

where v is the velocity and p the density of the liquid, p the pressure, 7 the viscosity, 
i the current passed to produce the motion and W = B x j as previously. These 
equations are sufficient only when certain effects are small. First, the magnetic field 
due to the current i must be much less than the applied field B. The order-of-magnitude 
condition for this is 

g< 1, 

where 1 is a characteristic length. Secondly, the e.m.f. induced by the motion of the 
liquid may cause currents only small in comparison with the applied current i. That is 

uvBZ2 
i < 1, (24) 

where u is the electrical conductivity of the liquid. These and other effects, such as 
thermal convection due to the heating effect of the current, contact impedance and 
tertiary magnetic fields could in practice be made negligible. 

Suppose then with these assumptions that v = 0 for t < 0 and that, a t  time t = 0,  
W suddenly assumes a constant value, i.e. a steady current and a steady magnetic 
field are switched on. Now provided the convective term (v.V)v in equation (21) is 
small, i.e. 

(25) 
vt - << 1, 1 

and provided the boundary layer is undeveloped, i.e. 
t ($) < I ,  

equation (21) becomes 
dv 

p-& = -vp-iw. 

At time t = 0, a pressure distribution is instantly created which, in view of equations 
(25) and (26), remains constant in time. Thus equation (27) may be integrated to give 

(28) 
1 

P 
v=--( iW+Vp)t .  

Equations for p may now be obtained from equations (28) and (22). Since V . W = 0 
(see $2.2) we obtain 

I c2p = 0, 

2 = -iW, on the wall. 
an 

(29) 
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Equations (28) and (29) are identical with equations (14) and (15) for the ‘worst 
flow’, the ratios - p / i  and p/2t appearing instead of h and y respectively. That is to 
say, the velocity distribution given by equation (28), with the flowmeter in the pump 
mode and under the conditions given by equations (22) to (26), is identical with the 
‘worst flow’ distribution given by equation (14). 

The kinetic energy of the motion under these conditions is 

6. Methods of evaluating E 

There are several methods for calculating E ,  all of which depend on evaluating B, j 
and V h  throughout the liquid. In  practice the integrals in equation (19) need not be 
evaluated very far along the pipe axis. Although in some instances the magnetic 
field may extend many radii from the plane of symmetry normal to the axis, the 
virtual current falls off rapidly in the direction of the pipe axis beyond the edges of 
the electrodes (Bevir 1970; Hemp 1975, figure 10). Consequently evaluation of the 
integrals over a volume bounded by the surface of the pipe and by planes separated 
by a distance equal to the electrode length plus 3 radii each side would give ample 
accuracy for the evaluation of E .  

Alternatively, E could in principle (also we believe in practice) be found by generating 
the worst flow and measuring Urn. 

6.1. Calculation from analytic formulae 
This method is practicable only when the boundary conditions on B and j are simple 
enough to permit both formulation of W and V h  and evaluation of the integrals in 
equation (19). An example of this approach is given by appendix A. 

6.2. B y  Jinite diflerences 
Provided the boundary conditions on B and j are clearly defined it is possible to 
evaluate B and j throughout the liquid using the method of finite differences. W and 
V h  could then be computed from the values thus obtained. 

6.3. B y  experimental determination of B andlor j 
B and j can both be determined experimentally by measurement of their normal 
components at  the surface bounding the flowmeter (Bevir, O’Sullivan & Wyatt 
1981). Experimental procedures of this kind could be combined with either of the 
methods given above to yield W and thus Vh. 

6.4. B y  direct measurement of Urn 
Suppose the worst flow is generated as described in $ 5  and that at  time t the current i 
is stopped and the flowmeter mode instantly assumed. Equations (18), (19) and (30) 
yield 

(31) 

All the quantities on the right-hand side of this equation are measurable; hence E can 
be found. 
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We have examined the design of an experiment of this kind. Although we think it 
is feasible, problems arise both from the small value of Urn (typically 0.5 p V )  and the 
relatively large bandwidth of the amplifier which is necessary to enable the signal to 
be measured within the period t .  The poor signal-to-noise ratio which results calls for 
a very high standard of design and execution. Signal averaging would need to be 
used, which implies long periods between consecutive observations in order to allow 
the liquid to come to rest. We have considered alternative schemes, based on measuring 
the induced voltage due to an oscillating ‘worst flow’ or to a steady-state ‘worst flow’ 
calling for a different definition of 8 :  most are feasible but difficult. 

The sensitivity S may be measured conventionally by passing liquid through the 
flowmeter a t  high Reynolds number with appropriate entrance and exit lengths. 
Alternatively, it may be measured by observing the pressure difference Ap which is 
generated between the closed ends when the flowmeter is in the pump mode. It may 
be shown, by integrating the x-component of equation (28), that 

S = ( A / i ) A p ,  

where A is the cross-section of the pipe. 

7. Discussion 
Hitherto there has been no criterion by which the sensitivities of different electro- 

magnetic flowmeters to velocity profile effects may be judged. The concept, indeed 
the physical reality, of a ‘worst flow’ has enabled us to suggest such a criterion. The 
criterion is not a mathematical abstraction but represents a real quality of electro- 
magnetic flowmeters. It can be computed and possibly directly measured. 

The ‘worst flow ’ that we have described is a velocity distribution which is deter- 
mined by specified boundary conditions and by a particular constraint on the circula- 
tion, namely that it reflects a specified kinetic energy. However, other ‘worst flows’ 
are conceivable, that depend on different boundary conditions and on different 
constraints on the circulation. For example, we could impose the no-slip condition a t  
the wall, or assume a particular boundary-layer structure. Eit,her of these assumptions 
would more severely restrict the range of possible velocity distributions explored by 
the extremization process than our very limited boundary conditions have done. 
Again, we could assume that the speed of the liquid was everywhere constant, rather 
than limit the total kinetic energy. 

There is therefore a number of ‘worst flows’, each of which could lead to a different 
definition of E .  The question arises whether any of these are more practical or more 
useful than others. The ‘worst flow’ that we have used can, when strictly applied, 
over-weight the ‘worst’ regions in the flowmeter. This is clear, for example, in the case 
of small hemispherical electrodes and a uniform magnetic field (appendix A) because, 
as re-+ 0, E -+ 00, whereas we know that the sensitivity to velocity profile effects which 
are met in practice does not get greater in small-electrode meters as electrode size is 
diminished. However, the problem of diverging values of E (appendix B) and conse- 
quent over-weighting can be overcome by terminating the integrals in a sensible 
manner. For example, if practical flow profiles are such that velocity does not change 
significantly over distances <& of the pipe diameter, a hemisphere of this same 
dimension can be taken as representative of any electrode of this size or smaller. The 
relative ease of mathematical calculations is the advantage of the definition of 8 we 
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have used. Finally we note that as it will almost certainly be possible to design ideal 
or very nearly ideal meters by optimization of electrode and magnet shapes the 
tendency of any measure e to over-weight some regions becomes unimportant because, 
however defined, its value will be small. 

Appendix A. Estimate of E for a uniform-field flowmeter with small 
diametrically opposite hemispherical electrodes 

Let the tube radius be a, the radius of the hemispherical electrodes re and the 
magnetic induction B. The direction of the field is perpendicular to the duct axis and 
to the line joining the electrode centres (figure 1 a). The sensitivity S is 2aB. 

It is assumed (and this will be verified later) that the main contribution to the 
integral in the numerator of equation (19) comes from regions of the channel in the 
vicinity of the electrodes. The integral is therefore evaluated for the simplified case 
of a hemispherical electrode on an insulated plane wall looking out on an infinite 
half-space of liquid with a uniform field parallel to the wall. The answer is doubled 
(since there are two electrodes) and substituted into equation (19) to give an estimate 
of e. We shall use the transformation 

J(W-VA)2dT = s s  W 2 d T -  AW.ds. (A 1 )  

We take spherical co-ordinates as shown in figure 1 (b) .  Let the magnetic field be 
in the positive x direction. The wall is then the surface 8 = +n- and the liquid occupies 
the region R > re, 0 6 8 < in-. The virtual current is 

so the weight vector is 

(sin $uo + cos 4 cos 6 ~ ~ ) .  
B 

27rR 
W = y  

u,, uo and uc stand for unit vectors in the directions of increasing R, 8 and $. Hence 
the integral of W 2  over the infinite volume of liquid is 

1 W2dr = B2/3nre. (A 4) 

We next proceed to evaluate A. We require the harmonic function whose normal 
derivative is given over a surface consisting of the xy plane for R > re and the hemi- 
spherical surface bounding the electrode. This may be found by division into two 
parts thus: 

A, is harmonic in the region 0 < R < 00, 0 < 6 < in- and satisfies 

A = A,+A,. 

B 
= - sin q5. (%)@+ 2nR 

A, is harmonic in the region R > re, 0 < 6' < n-, it satisfies A2(R,  n- - 8,4)  = A2(R, 0,d) 
(this ensures that the normal derivative of A, on 8 = in- is zero) and is such that its 
normal derivative on R = re,  0 < 8 < an- is equal and opposite to that of A, (this 
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t B  

(a) ( b )  

FIGUXE 1. (a)  Cross-section of flowmeter normal to pipe axis through the mid-plane of the 
hemispherical electrodes: a,  radius of pipe; re, radius of electrode; B, direction of uniform 
magnetic field. ( b )  Co-ordinate system: the pipe wall is in the xy plane and the centre of the 
base of one hemispherical electrode coincides with the origin. 

ensures that the normal derivative of h on R = re, 0 < 8 c 47r is zero, in conformity 
with the condition that ahfan = W,, where W, = 0 since j in W = B x j is normal to 
the surface of the electrode). Straightforward integration of Laplace’s equation in 
spherical co-ordinates yields - 

B . i-cose 
h --sin$- 
- 2 n R  sin8 ’ 

A, may be found by using spherical harmonics and the associated Legendre functions: 

An (5) 2n+1 P; ,+ , (~~S el, B 
A,=--sin$ C - 

27rR , = 0 2 n + 2  R 

where 

(A 7) 
n+l 4 n  + 3 ( 2 n  + 1) (2% - 1)  (2% - 3) . . . 1  

A ,  = (G) 
( 2 7 ~ + 2 ) ( 2 n + 1 ) ~  (n+ I ) !  

Finally 

We obtain from equations (A.3) and (A.8) 

W 

1 -  , = A P P : , , , ( O ) ] ,  ( 2 n  + 2) ,  

( - ( 2 n  + 1) ( 2 n  - 1) ( 2 n  - 3 ) .  . . l  
s 

in which 

%+l(O)  = 2” n! 

A numerical evaluation of the sum gives the result 

B2 
hW.ds = 0*201--. s r y e  
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The value of E is, by equations (A. l ) ,  (19), (A.4) and the above result: 
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E = 0.14(a/re)) 

(where the integrals have been doubled). 
It may be shown, by taking the integrals of W 2  and hW, between the limits re and a 

instead of re and 00, that the contribution to their difference from regions beyond 
R = a is approximately a fraction rJ2a of the total and therefore small. Consequently 
the initial assumption is verified. 

We note also that both W and Vh tend to 0 as R + co, in conformity with the boun- 
dary condition expressed by equation (S), $2.2. 

Appendix B. Cases where E is theoretically infinite 
In addition to the point-electrode flowmeter with magnetic field locally uniform at 

an electrode, there are three other cases we have noticed where 6 = 00. The second 
and third of these are both for the point-electrode flowmeter, either when the magnetic 
field at  points in the locality of the electrodes is non-uniform, finite and non-zero or 
when it is zero a t  the electrodes but on approaching them does not tend to zero 
rapidly enough to ensure the convergence of I (see $4). These three cases are due 
essentially to the infinite value of the virtual current at  a point electrode, since 
W = B x j. The fourth case is rather different and reflects the symmetry of W in B 
and j. It occurs when there is a discontinuity in magnetic potential across a line on the 
inside surface of the duct of a flowmeter with any kind of electrodes. (Such a dis- 
continuity is approximated in practice in, for example, a magnet consisting of a thin 
current-carrying wire laid on the inside surface of an insulated iron duct, or in a 
magnet consisting of a current sheet laid on the inside surface of an iron duct when 
the sheet is partially covered by a thin layer of permalloy, the discontinuity occurring 
at  the boundary of the permalloy.) Near a small segment S of the line the virtual 
current is uniform and the magnetic field is of order r- l ,  where r is the perpendicular 
distance of a point from the line. I Vhl does not diverge as r 3 0. Hence I W - VAIN r-l 
and the part of the integral in the numerator of equation (19) conducted over a small 
half-cylinder in the channel whcse axis coincides with the segment S diverges 
logarithmically. 

Appendix C. Proof that the flow given by equation (14) corresponds to a 
maximum of flowmeter response 

Consider a flow differing from v (as given by equation (14)) and let it be v + v’. 
Let it be constrained in the same way as v, so that v’ satisfies equations (7), (S), (10) 
and the relationship 

(v+v’)2d7 = K .  (C 1)  s 
s 

Equation (3.1) together with equation (9) (for v) gives 

v.v’d7 < 0. (C 2) 
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The response due to v is given by equation (2). This, with equations (14), (7) and (lo), 
gives 
v 

U = v.(W-Vh)dT = -- (W-Vh)2dT. s 2Y ' s  
This is greater than zero if we take the negative value of y. The response due to 
v + V' is U + U'. By equations (2), (7), (8) and (10) (for v') we have 

U' = v'.Wdr = v'.(W-Vh)dr. 1 s  

s 
We now use equation (14) to obtain 

U' = -2y V'.VdT. 

Now by equation (C.2) U' is negative (for the negative value of y) .  Hence U t U' < U 
for all v' so the flow given by equation (14) corresponds to a maximum of the absolute 
value of the response. 
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